Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38542574

RESUMO

We propose and demonstrate a novel on-chip optical sampling pulse interleaver based on time mode interleaving. The designed pulse interleaver was fabricated on a 220 nm silicon-on-insulator (SOI) platform, utilizing only one S-shaped delay waveguide. Interleaving is achieved by the relative time delay between different optical modes in the waveguide, eliminating the need for any active tuning. The total length of the delay waveguide is 5620.5 µm, which is reduced by a factor of 46.3% compared with previously reported time-wavelength interleaver schemes. The experimental results indicate that the device can convert an optical pulse into a 40 GHz pulse sequence composed of four pulses with a root mean square (RMS) timing error of 0.9 ps, making it well suited for generating high-frequency sampling pulses for optical analog-to-digital converters.

2.
Opt Express ; 31(25): 41034-41045, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087512

RESUMO

In this paper, we proposed a 128-channel hybrid mode/polarization/wavelength (de)multiplexer by monolithically integrating four 16-wavelength-channel (de)multiplexers based on bi-directional MRRs arrays and an 8-channel hybrid mode/polarization (de)multiplexer. The hybrid mode/polarization (de)multiplexer consists of a polarization beam splitter (PBS) and cascaded six asymmetric directional couplers (ADCs). The present 128-channel hybrid (de)multiplexer utilizes four modes, dual polarizations, and sixteen wavelengths to improve the data transmission capacity of optical communication systems. For the fabricated hybrid (de)multiplexer, the channel spacing is 1.4 nm, and we used thermal tuning electrodes with a tuning efficiency of 0.45 nm/mW to calibrate resonance wavelengths. The measurement results show the insertion loss is 3∼8.5 dB, the inter-mode crosstalk is -7∼-23 dB, and the inter-wavelength crosstalk is-8∼-20 dB. The proposed (de)multiplexer is a promising approach to enhance the transmission capacity and has great potential in high-speed data transmission.

3.
Micromachines (Basel) ; 14(8)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37630144

RESUMO

In this paper, we demonstrate a silicon forward-biased positive intrinsic negative (PIN) Mach-Zehnder modulator (MZM), which has two operating states of high efficiency and high speed. The two operating states are switched by changing the position where the electric signal is loaded. The modulator incorporates a PIN phase shifter integrated with the passive resistance and capacitance (RC) equalizer (PIN-RC), which expands the electro-optic (E-O) bandwidth by equalizing it with modulation efficiency. The fabricated modulator exhibits a low insertion loss of 1.29 dB in two operating states and a compact design with a phase shifter length of 500 µm. The modulation efficiencies are 0.0088 V·cm and 1.43 V·cm, and the corresponding 3 dB E-O bandwidths are 200 MHz and 7 GHz, respectively. The high-speed modulation performance of the modulator is confirmed by non-return-to-zero (NRZ) modulation with a data rate of 15 Gbps without any pre-emphasis or post-processing. The presented modulator shows functional flexibility, low insertion loss, and a compact footprint, and it can be suitable for applications like optical switch arrays and analog signal processing.

4.
Opt Lett ; 48(13): 3367-3370, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390132

RESUMO

Lithium niobate-on-insulator (LNOI) is a promising integration platform for various applications, such as optical communication, microwave photonics, and nonlinear optics. To make Lithium niobate (LN) photonic integrated circuits (PICs) more practical, low-loss fiber-chip coupling is essential. In this Letter, we propose and experimentally demonstrate a silicon nitride (SiN) assisted tri-layer edge coupler on LNOI platform. The edge coupler consists of a bilayer LN taper and an interlayer coupling structure composed of an 80 nm-thick SiN waveguide and an LN strip waveguide. The measured fiber-chip coupling loss for the TE mode is 0.75 dB/facet at 1550 nm. Transition loss between the SiN waveguide and LN strip waveguide is ∼0.15 dB. In addition, the fabrication tolerance of the SiN waveguide in the tri-layer edge coupler is high.


Assuntos
Óxidos , Fótons , Compostos de Silício
5.
Opt Express ; 31(2): 1931-1942, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785217

RESUMO

In this paper, an on-chip photonic sampled and quantized analog-to-digital converter (ADC) on thin-film lithium niobate platform is experimentally demonstrated. Using two phase modulators as a sampler and a 5×5 multimode interference (MMI) coupler as a quantizer, a 1 GHz sinusoidal analog input signal was successfully converted to a digitized output with a 20 GSample/s sampling rate. To evaluate the system performance, the quantization curves together with the transfer function of the ADC were measured. The experimental effective number of bits (ENOB) was 3.17. The demonstrated device is capable of operating at a high frequency over 67 GHz, making it a promising solution for on-chip ultra-high speed analog-to-digital conversion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...